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This paper is concerned with the dynamic behaviour of Timoshenko beams. A new
method for simply and systematically constructing finite beam elements is then proposed.
The continuous model, which takes into account both rotary inertia and transverse shear
deformation, is presented as a tutorial review. It allows certain vibratory phenomena
characteristic of short beams to be demonstrated. A method is proposed for constructing
a two-node finite element based on Guyan condensation that leads to the results of classical
formulations, but in a simple and systematic manner. This element is verified with
numerical and experimental tests. The proposed method is then generalized in order to
obtain new improved three-node finite elements.
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1. INTRODUCTION

In structural mechanics, the Euler–Bernoulli formulation represents the most widely
used theory for modelling the dynamic flexural behaviour of beams. This theory was
extended by Timoshenko [1] in order to account for rotary inertia and transverse shear
effects, often considered to be secondary. This extension leads to small corrections of the
predictions of the Euler–Bernoulli model in the case of slender beams. However, it can
lead to significant differences in the case of short beams.

First, we present in this paper a review of the continuous Timoshenko beam theory, and
specifically the particular phenomena due to the introduction of shear effects [2]. The
existence of ‘‘shear modes’’ is made apparent by direct integration of the differential
equations of motion, and comfirmed by numerical tests.

Second, the Timoshenko model is discretized in beam finite elements having two d.o.f.
(degrees of freedom) per node: one displacement and one rotation angle. The hypothesis
and calculation made by Davis [3] are briefly presented in order to obtain a two-node finite
element from a cubic interpolation of the transverse displacement. A new method is then
proposed, based on Guyan condensation [4], leading to stiffness and mass matrices which
are identical to those obtained by Davis. The performance of the Timoshenko element is
then compared experimentally with that of more commonly used finite elements. The
proposed method has the advantage of being simple, systematic and generalizable. Indeed,
it allows new three-node beam elements to be constructed easily from high order
interpolations. The resulting elements are more precise than the usual two-node
Timoshenko element, provided that Guyan condensation remains valid in the frequency
domain of interest.
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2. REVIEW OF THE TIMOSHENKO BEAM THEORY

2.1.  

Consider a uniform prismatic straight beam of length l. A Cartesian co-ordinate system
(Ox, Oy, Oz) is defined on the beam, where (Ox) is the centroidal axis, and (Ox, Oy) is
a symmetry plane. It is assumed, according to classical kinematics, that the cross-section
remain plane (no warping) and that axis displacement is due only to the rotation angle
c(x, t) of cross-section. Let v(x, t) be the time-dependent transverse displacement of the
centroidal axis.

The dynamic equilibrium equations are written as (a list of main symbols is given in
the Appendix).

1T/1x=m(12v/1t2), 1M/1x+T=mr2(12c/1t2). (1, 2)

According to Timoshenko’s hypothesis, the shear force is expressed by the relation:

T= kAG(1v/1x−c) (3)

Remark: There are several ways of obtaining the shear coefficient k. Timoshenko [5]
presented a calculation based on the hypothesis of a parabolic distribution of the transverse
stress sxy over the cross-section. The method developed by Cowper [6] consists of deducing
k from the three-dimensional elasticity problem of a cantilever beam [7]. It proves to be
more accurate because it accounts not only for the exact analytical expression of sxy but
also that of sxz. In other studies, certain authors [8, 9] introduce the variation of the
coefficient k as a function of the frequency. However, if one is to retain relatively simple
results for arbitrary cross-sections and boundary conditions, the coefficient k obtained by
Cowper is the most satisfactory one.

The displacement equation which governs free motion of the beam is

EI (14v/1x4)−mr2(1+ (E/kG)) (14v/1x21t2)+m(12v/1t2)+mr2(m/kAG)14v/1t4 =0. (4)

Remark: In the static case, equations (1) and (4) lead to the following properties
(independent of the boundary conditions): the shear force T is constant along the beam;
the static deformation is a third order polynomial in x.

For slender beams (l/r large), shear and rotary inertia effects are neglected. The
well-known Euler–Bernoulli equation of motion is then

EI (14v/1x4)+m(12v/1t2)=0. (5)

The eigenfrequencies of the beam are expressed by

fn =(b2
n/2pl2)zEI/rA. (6)

2.2.  

Let us consider an eigenmode having an angular frequency v. By analogy with the
Bernoulli case, natural frequencies of the beam are defined by

fn =(t2
n/2pl2)zEI/rA. (7)

The equation of motion can be transformed into

l4 (d4v/dx4)+ (a+ h)Vl2 (d2v/dx2)+ (ahV−1)Vv=0. (8)

The study of the associated characteristic equation in l;

l4 + (a+ h)Vl2 + (ahV−1)V=0, (9)
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shows the existence of two families of solutions [2] depending on the position of the
frequency parameter t with respect to the critical value tc:

tc =(l/r) 4zk/2(1+ n). (10)

Note that the value tc can appear in the analysis frequency band when the ratio l/r
decreases (short beams) or when k decreases (profiles, tubes, thin walled volumes).

In general, an application of the boundary conditions to obtain the frequency equation
leads to rather fastidious calculations and the resulting equation is solvable analytically
only in the simplest cases [2, 10]. For example, in the case of a pinned–pinned boundary
for the first and second families, the preceeding equations lead to the solution

v(x)= v0 sin(np x/l). (11)

Equation (9) can be written as

ahV2 − ((a+ h)n2p2 +1)V+ n4p4 =0, with V= t4. (12)

Let Vn1 and Vn2 be the roots of this equation (Vn1 EVn2). It can be proved that Vn2 eVc ,
(Vc = t4

c ). One can thus conclude that the frequency parameters corresponding to
eigenmodes of the first family are given by Vn1 and, in the second family, two types of
solutions can be distinguished resulting, respectively, from Vn1 and Vn2. Now, each value
of n leads to two distinct values of Vn but to a single modal deformation. As a consequence,
while the mode of number n in the first family possesses n+1 vibrational nodes, this is
no longer the case in the second family. In other words, a new spectrum of eigenfrequencies
appears in the second family, which superposes itself on the classical spectrum (see
Figure 1). This kind of mode only appears when shear effects are present and they will
thus be qualified as ‘‘shear modes’’. Indeed, it is shown that it is typically for these modes
that the rotations of the cross-sections dominate over the transverse displacements (see
Figure 2).

At the limit between the two families, when the solution exists, the integration of the
equations lead to a very particular bending motion, where there is no transverse
displacement. This can be called a ‘‘pure shear mode’’. It consists only of an alternative
oscillation of the cross-sections about the z direction.

These important properties are taken into account by the Timoshenko finite element
model studied thereafter.

3. FINITE ELEMENT FORMULATION

3.1. 

Consider a beam having the characteristics described above. This beam is discretized
into n identical two-node finite elements of length L= l/n with two degrees of freedom
per node, a displacement and a rotation angle.

Let qn =[Vi−1ci−1Vici ]T be the vector of generalized displacements for element i, and
let Fn =[Ti−1Mi−1TiMi ]T be the vector of the corresponding generalized forces. The nodal
approximation is written as

$v(x)
c(x)%=$NV

Nc

(x)
(x)%qn, (13)
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where NV (x) and Nc (x) are, in R1,4, the polynomial interpolation shape functions. One
obtains the following element stiffness and mass matrices:

KT =g
L

0

EI0dNc

dx 1
T dNc

dx
dx+g

L

0

kAG0dNv

dx
−Nc1

T

0dNV

dx
−Nc1 dx, (14)

MT =g
L

0

mNT
V NV dx+g

L

0

mr2NT
c Ncdx, KT , MT $R4,4. (15)

Since the approximation for the displacement field depends only on the two nodal
values, it is natural to choose a linear interpolation (isoparametric element). However, this
choice makes the ‘‘shear locking’’ phenomenon appear, which leads to poor results for very
thin beams.

In order to solve this problem, it is usual to construct a two-node beam element from
a higher order polynomial interpolation. Shear locking is avoided by using an interpolation
of order three (corresponding to the order of the exact static displacement field) or higher.

Figure 1. The frequency parameter as a function of the aspect ratio for a pinned–pinned beam of circular cross
section.
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Figure 2. The first eigenmodes of a guided–guided beam with small aspect ratio, modelled with eight-node
brick elements.

The method used by Davis [3] to obtain the stiffness matrix consists of interpolating the
displacement v(x) and the rotation c(x) from the static equilibrium relations. The same
interpolations are used for the mass matrix.

3.2.  

3.2.1. Two-node finite elements
The method proposed here is based on Guyan static condensation. It allows the

Timoshenko finite beam elements to be constructed in a simple and systematic manner.
Consider an isoparametric Timoshenko beam element with four equidistant nodes (see

Figure 3). Given that the interpolation field is cubic for the independent variables v and
c, the generalized displacement vector for the element is written as

qn =[V1 c1 V2 c2 V3 c3 V4 c4]T.
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Let K and M be the elementary stiffness and mass matrices of the element (K, M $R8,8).
The shape functions NV and Nc can be calculated immediately, and lead to K and M defined
by the relations (14) and (15).

In order to construct the two-node finite beam elements, the d.o.f. are partitioned into
two subsets: the master d.o.f. corresponding to junction nodes of the element (nodes 1 and
4) and the slave dof corresponding to the two internal nodes (nodes 2 and 3).

The vector of nodal unknowns, as well as the stiffness and mass matrices, can thus be
partitioned in the following way:

q=$qm

qs%, with 6qm =[V1 c1 V4 c4]T

qs =[V2 c2 V3 c3]T7;
K=$Kmm

KT
ms

Kms

Kss%; M=$Mmm

MT
ms

Mms

Mss%; K, M $R8,8.

The dynamic equilibrium of the element can be written as

(K−v2M)q=F, (16)

with

$Fm

0 %
being the vector of junction forces between elements.
The use of Guyan [4] static condensation defines the following transformation at the

element level:

q=$ Im

−K−1
ss KT

ms%qm,TGqm, (17)

Im is the identity of matrix of order m. where Equation (16) can be expressed in condensed
form as

(Kc −v2Mc )qm =Fm, (18)

with

Kc =TT
G KTG, Mc =TT

G MTG. (19)

Kc and Mc are the elementary matrices condensed on the junction d.o.f. of the finite
element. The compatibility relations between finite elements then allow elements to be
assembled to obtain the model for the global beam.

Figure 3. An isoparametric beam element with four equidistant nodes. Q, two master nodes.
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Symbolic calculations allows the condensed elementary stiffness matrix to be obtained:

12 6L −12 6L

KT =Kc =
EI

L3(1+f)
G
G

G

K

k

6L L2(4+f) −6L L2(2−f) G
G

G

L

l

with f=
12EI

kAGL2. (20)
−12 −6L 12 −6L

6L L2(2−f) −6L L2(4+f)

Likewise, the condensed elementary mass matrix is

m1 m2 m3 −m4

MT =Mc =
rAL

(1+f)2G
G

G

K

k

m2 m5 m4 −m6 G
G

G

L

l

, (21)
m3 m4 m1 −m2

−m4 −m6 −m2 m5

F J
m1 =

13
35

+
7f

10
+

f2

3
+

6
5

r2

L2G G
G G
G Gm2 =0 11

210
+

11f

120
+

f2

24
+0 1

10
−

f

21 r2

L21LG G
G G
G G

with

m3 =
9
70

+
3f

10
+

f2

6
−

6
5

r2

L2G G
j f
J Fm4 =0 13

420
+

3f

40
+

f2

24
−0 1

10
−

f

21 r2

L21LG G
G G
G G

m5 =0 1
105

+
f

60
+

f2

120
+0 2

15
+

f

6
+

f2

3 1 r2

L21L2

G G
G G
G G

m6 =0 1
140

+
f

60
+

f2

120
+0 1

30
+

f

6
−

f2

6 1 r2

L21L2G G
f j

Note that when the aspect ratio of the element becomes large (f:0), KT and MT tend,
respectively, towards matrices KB and MB of the two-node finite beam element derived from
the Euler–Bernoulli formulation with rotary inertia effects.

Finally, the matrices KT and MT simply obtained by the proposed method are identical
to those calculated by Davis [3] and other authors [11–13]. This is evident for the stiffness
matrix KT, since Guyan condensation is exact in the static case. However, for the mass
matrix MT, the Davis hypothesis, which consists of using a statically derived interpolation
in the dynamic case, simply amounts to neglecting internal inertial forces in the
condensation procedure.

The mass matrix MT of the two-node Timoshenko finite element that is thus obtained
is rarely presented in the literature. Many authors replace it by the Bernoulli matrix MB,
thereby creating a ‘‘mixed’’ finite element formulation in which the shear term f intervenes
in the stiffness matrix but not in the mass. This finite element is still commonly employed
in certain structural calculation codes.
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Figure 4. The frequency errors (in %) between the discrete and continuous models for three types of beam
finite elements. Number of elements =100.

3.2.2. Numerical results
To compare the behaviour of these finite elements, a guided–guided beam with a solid

circular cross-section and an aspect ratio of l/r=12 is considered. It is modelled separately
by three types of beam elements: Timoshenko, Bernoulli and Mixed (respectively denoted
Tbe, Bbe and Mbe). The accuracy of each model is shown in Figure 4. The Bernoulli model
tends to overestimate eigenfrequencies. The inverse is true for the mixed approach. Indeed,
the latter leads to error on the order of 30% and greater from the fourth mode, while the
Timoshenko model yields very small errors (of the order of 0·04%).

It is also important to note that the Timoshenko beam element is the only one that
obtains the ‘‘shear modes’’ (from the sixth mode) studied previously.

3.2.3 Experimental test
In order to validate the use of the two-node Timoshenko element, an experimental test

is considered. The beam has a solid circular cross-section, with an aspect ratio of
l/r1 11·47. The boundary conditions are free–free. Four discretizations have been applied
to this case: three beam element models (Tbe, Bbe and Mbe) n=100 (202 d.o.f.); an
eight-node solid element with three d.o.f. per node (denoted Sel); n=600 (2520 d.o.f.).

T 1

A comparison between the results obtained with different models [e=( fcal − fmes)/fmes]

Finite elements models
ZXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXV

Sel model Tbe model Bbe model Mbe model
Mode Measure ZXXCXXV ZXXCXXV ZXXCXXV ZXXCXXV
no. f(Hz) f(Hz) e(%) f(Hz) e(%) f(Hz) e(%) f(Hz) e(%)

1 4957 4867 −1·81 4935 −0·44 5296 6·83 4728 − 4·61
2 10 542 10 543 0·01 10 468 −0·70 12 657 20·0 9020 −14·4
3 16 476 16 722 1·49 16 382 −0·57 21 657 31·4 12 251 −25·6
4 20 514 21 315 3·90 20 690 0·85 31 494 53·5 14 323 −30·1
5 24 439 25 350 3.72 25 019 2·37 41 782 70·9 15 694 −35·8
6 24 679 25 723 4·23 25 186 2·05 52 270 112 16 600 −32·7
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Figure 5. An isoparametric beam element with five equidistant nodes. Q, three master nodes.

The eigenfrequencies obtained for the first six bending modes, as well as the relative
errors with respect to the measured, are reported in Table 1. This shows that the
Timoshenko model gives results which are in complete agreement with experiments.
Moreover, it performs as well as the model in which solid elements are used for a much
reduced number of dof (12 times less in this case). However, the use of Bernoulli and Mixed
elements leads to unacceptable errors despite a relatively fine mesh.

3.2.4. Higher order finite element
In order to enrich the model, it is interesting to use the proposed method to construct

finite beam elements based on higher order interpolations.
Whatever the order of the interpolation, the resulting two-node element is necessarily

the same. Indeed Guyan condensation comes down to performing an interpolation
based on a static problem, and since the static deformation of a beam is a third
order polynomial, all interpolations of order three or higher lead to the same condensed
matrices.

In order to obtain an effectively higher order element, we propose a three-node beam
finite element defined by two junction nodes and an internal node. Consider, for example
the five-node isoparametric element in Figure 5, the master nodes of which are now nodes
1, 3 and 5. The proposed method allows the corresponding stiffness and mass matrices
($R6,6) to be obtained.

3.2.5. Numerical results
The dynamic performance of this element is illustrated by the following test case. The

structure is defined by a straight beam which is clamped at both ends and pinned at
mid-length. Two discretized models of the same size are generated based, respectively, on
two- and three-node Timoshenko beam element (denoted 2N and 3N). The
eigenfrequencies of these models were evaluated and the results reported in Table 2. The

T 2

A comparison of the results obtained by using the 2N and 3N elements [e=( ffe − fco)/fco]

2N model (29 d.o.f.) 3N model (29 d.o.f.)
Mode Exact ZXXXXXCXXXXXV ZXXXXXCXXXXXV
no. f(Hz) f(Hz) e(%) f(Hz) e(%)

1 3096·25 3097·22 0·03 3096·70 0·01
2 4408·22 4410·94 0·06 4409·47 0·03
3 9598·68 9626·23 0·30 9612·11 0·14
4 11 501·0 11 548·4 0·40 11 524·6 0·20
5 18 901·8 19 107·2 1·10 19 015·1 0·60
6 21 147·6 21 435·7 1·40 21 327·4 0·85
7 30 269·9 39 091·5 2·70 30 528·2 0·85
8 32 610·6 33 638·0 3·20 32 914·5 0·93
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T 3

Static results derived from interpolation of different orders for a single finite element

Order of the interpolation Deflection, yM Deflection, yM, for f=0

4 5
3072 (3+11f) Fl3

EI
1

204·8
Fl3

EI

6 7
4096 (3+11f) Fl3

EI
1

195·04
Fl3

EI

8 1
262 144 (1357+5053f) Fl3

EI
1

193·18
Fl3

EI

10 11
3 145 728 (1485+5597f) Fl3

EI
1

192·57
Fl3

EI

Continuous Timoshenko 1
192 (1+4f) Fl3

EI
1

192
Fl3

EIformulation

performance of the 3N elements is significantly better than that obtained with the 2N
elements. The frequency error between the discrete model and the continuous one is less
than 1% for the first eight modes with the 3N elements, while it is more than 3% for the
eighth mode with the 2N elements.

Now, a question which remains is whether or not the interpolation order can still be
increased. Indeed, the interpolation of the static deformation based on a three-node
element is a third order polynomial which is continuous, but defined on two parts. In
contrast to the two-node element, this deformation cannot be exactly represented by a
single polynomial, regardless of its order. Consequently, the method for enriching the
interpolation can be generalized a priori.

This property is illustrated by the static problem of a clamped–clamped beam of length
l, modelled by a single three-node finite element derived from a successively enriched
interpolation, and subject to a transverse force F situated at the mid-length on the internal
node. The corresponding maximal deflections are given in Table 3. The precision of the
static results increases with the interpolation order.

However, the performance of the static condensation diminishes in the dynamic case.
Indeed, the domain of validity of Guyan condensation is always defined between 0 and
the cut-off frequency fc [14] corresponding to the smallest eigenfrequency of the problem
with the master d.o.f. grounded defined by (kss −v2Mss )qs =0. Thus, when the number
of slave d.o.f. increases with the chosen order of interpolation, the frequency fc decreases,
resulting in a global degradation of the results. In general, the three-node element derived
from a fourth order interpolation provides the best dynamic performance.

4. CONCLUSIONS

In this paper, the continuous dynamic model of the Timoshenko beam has been
reviewed. In particular, the relation between the behavioural characteristics and the shear
effect in short beams, as well as their specific eigenmodes, have been emphasized.

A new method based on Guyan condensation has been presented, which allows the
Timoshenko beam element to be obtained. These isoparametric elements take into account
rotary inertia and transverse shear, yielding results which are in agreement with the
continuous model, especially in the case of short beams.
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The technique proposed for constructing finite elements has the advantage of being
simple and systematic. Moreover, it has been shown, for the two-node element, that all
choices of polynomial interpolations of order three or higher lead necessarily to the same
stiffness and mass element matrices. For the three-node element, the generalization of this
method to higher order interpolations allows elements which perform better to be obtained
(provided that Guyan condensation is still valid).
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APPENDIX: MAIN SYMBOLS

A Cross-section area
I moment of inertia
r =zI/A, radius of gyration
l length of beam
m =rA, mass per unit length
k shear coefficient
T shear force
M =EI 1c/1x, bending moment
E Young’s modulus
G shear modulus
n Poisson ratio
x distance along length of beam

v transverse displacement
C rotation angle
bn frequency parameter of the nth mode

(Bernoulli theory)
tn frequency parameter of the nth mode

(Timoshenko theory)
V =v2ml4/EI, coefficient relative to angular

frequency
a =r2/l2, coefficient relative to the rotary

inertia
h =(E/kG)(r2/l2), coefficient relative to shear


